RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2014

FIRST YEAR

CHEMISTRY (General)

Date : 30/05/2014 Time : 11 am – 2 pm

Paper : II

Full Marks: 75

[3]

[3]

[1]

(Use a separate Answer Book for each group)

Group – A

(Answer one question from each Unit)

Unit - I

1. a) Explain the effects of following ionisation processes on bond orders and bond lengths

i) $O_2 + e \rightarrow O_2^-$ ii) $O_2 - e \rightarrow O_2^+$ iii) $N_2 + e \rightarrow N_2^$ iv) $N_2 - e \rightarrow N_2^+$ [4×1]

- b) Define Lewis acids and Lewis bases. Give examples. What are the limitations of the theory? [2+2+1]
- c) Explain with examples i) conductors ii) semiconductors iii) insulators [3×1] d) Mention two limitations of Lewis acid base concept. [1]
- 2. a) Draw the MO energy level diagram for N₂ molecule. Calculate bond order and explain the diamagnetism of the molecule. [3+2]
 - b) Explain Lux-Flood theory of acids and bases.
 - c) BDS is a suitable redox indicator for the estimation of Mohr salt using K₂Cr₂O₇ in acid medium, explain. [2]
 - d) What is meant by disproportionation of an ionic species? Give example.

Unit - II

3.	a)) Define order, molecularity and rate of a reaction. Distinguish between order and molecularity of a		
		reaction. [1+1+1+2]		
	b) State and explain Ostwald's dilution law. Show that the dissociation constant of a weak acid is twice			
		the concentration at which it is 50% dissociated. [4+2]		
	c)	What do you mean by homogeneous catalysis?[1]		

- 4. a) Derive the expression for rate constant of a first order reaction. Show the relation between rate constant and half life. The rate of a first order reaction is 0.04 mole L⁻¹sec⁻¹ at 10 minutes and 0.03mole $L^{-1}sec^{-1}$ at 20 minutes respectively after initiation. Find the half life of the reaction. [4+2][2]
 - b) Explain that enzymes can act as catalyst.
 - c) Discuss the variation of specific conductance and equivalent conductance with dilution for strong and weak electrolytes. [3]
 - d) Give one example of pseudo unimolecular reaction.

Group – B

Unit – I (Answer any three questions)

5. a) Compare and account for the acidity of the underlines H in-

$$\underline{H} - CH_2 - C = CH_2, \quad \underline{H} - CH_2 - CH - CH_3, \quad \underline{H} - CH_2 - C - CH_3 \\
 CH_3, \quad CH_3, \quad O \\
 (A) \quad (B) \quad (C)
 (B)$$
(3)

	b)	Arrange the following carbocations according to their increasing stability, Explain							
		i) $CH_3CH_2CH_2\overset{+}{C}H_2$ ii) $(CH_3$) ₃ ⁺ C	iii) $CH_3CH_2 \overset{+}{C}HCH_3$	[2]				
6.		Which of the following compounds show i) CH ₃ CH(Br)CH ₃ ii) CH ₃ C Which of the following compounds show	CH(CH ₃)CH ₂ CH ₃	iii) CH ₃ CH(OH)COOH	[1]				
	0)	• •	$-CH = CH - CH_3$	15111 .	[1]				
	c)	Show R-and S-configuration of glycerald	ehyde. Are they opti	ically active?	[3]				
7.	a)	Write down Fischer projections of all the $HO_2C - CH(OH) - CH(OH) - CO_2H$	stereoisomers of tar	taric acid,	[3]				
	b)	Give structures of (A) and (B) : Me_3CBr	$\xrightarrow{i) \text{ Li/Et}_2O}_{ii) \text{ Cu}_2I_2} \rightarrow (A) -$	$\xrightarrow{\text{PhCH}_2\text{Br}}(B)$	[2]				
8.	a)	Write mechanism of the following reaction	$\mathbf{Dn}: \mathbf{H}_2\mathbf{C} = \mathbf{CH}_2 + \mathbf{Br}$	$\dot{f}_2 \rightarrow CH_2Br - CH_2Br$	[3]				
	b)	Identify X and Y in the following reactio							
		$CH_3 - C \equiv C - CH_3 \xrightarrow{X} Y \rightarrow CH_3$	$H_3 - C - C - C - CH_3$ $\bigcup_{ii} \bigcup_{ij} O$		[2]				
9.	a)	Why meso-tartaric acid is not optically ac			[2]				
	b) c)	Show E_ and Z_ isomerism in 1,2 dichlo If the specific rotation of one enantiomer enantiomer?		$\cdot 5^{\circ}$ what is the sp. rotation of	[2] the other [1]				
	<u>Unit – II</u>								
(Answer <u>any two</u> questions)									
10	. a)	Which of the following compound reacts i) CH ₃ CH ₂ CO ₂ H ii) CH ₃ CHO	1 1	and Tollens' reagent? $H_2CH = CH_2$ iv) $H_3C - C \equiv 0$	[1] C-CH ₃				
	b)	The reaction of ethanal with one equivale i) acetal ii) hemiacetal		-	[1]				
	c)	Give the product(s) of the following reac	iii) ketal tions :	iv) hemiketal	[3×1]				
		i) $O_2N \longrightarrow Cl \xrightarrow{aq. NaOH} 160^{\circ}C$	ii) O	$\stackrel{\text{Br}}{\longrightarrow} \stackrel{\text{KNH}_2}{ \text{liq. NH}_3, -33^{\circ}\text{C}} \rightarrow$					
		iii) $\langle O \rangle$ -CH ₂ - CHCH ₂ CH ₃ - $\frac{alc.K}{hea}$	$\xrightarrow{\text{OH}}$						
11		rite notes on—			[21/2+21/2]				
		Perkin reaction Benzoin condensation							
12	,	What happens when—			[2×1·5]				
14	. u)	i) acetaldehyde is treated with dilute N	aOH?						
	1 \	ii) benzaldehyde is treated with concent	rated NaOH solutior	n?	501				
	b)	Discuss S_N^{-1} reaction with example.			[2]				

<u>Group – C</u>

(Answer one question from each Unit)

<u>Unit - I</u>

b)c)d)e)		 [1] [2] [3] [3] [3] 						
b) c)	From the kinetic theory of gases, deduce an expression for the collision number between the molecules of the same gas at a certain temperature. [2 What is viscosity of a liquid? Define viscosity coefficient. Mention its units in CGS and SI. [2+2 Calculate kinetic energy of 1gm CO ₂ at 27°C in ergs. ($R = 8.314 \times 10^7$ ergs)	+3] +1] [2]						
<u>Unit - II</u>								
15. a)	Which of the following thermodynamic quantities are path dependent function.	[2]						
	i) Enthalpy ii) Work iii) Internal energy iv) Energy							
b)	Indicate which of the following properties are intensive or extensive—	[2]						
c)	i) Volumeii) Surface Areaiii) Densityiv) Molar volumeIndicate which of the following statements are true or false—	[2]						
0)	i) Most of the natural processes are reversible in nature							
	ii) Work obtained in a reversible process is less than that obtained in an irreversible one							
	iii) All adiabatic processes are isoenthalpic							
	iv) First law of thermodynamics does not tell us a chemical reaction would take place in which direction forward or backward							
d)	d) Calculate the maximum work in ergs when 2 moles of an ideal gas expands isothermally at 100°C							
e)	from 1 litre to 10 litre. Deduce the relation TV^{r-1} = constant for an adiabatic reversible change of an ideal gas.	[3] [4]						
16. a)	Prove that for an ideal gas $C_P - C_V = \left(\frac{\partial V}{\partial T}\right)_P \left[P + \left(\frac{\partial PV}{\partial P}\right)_T\right].$	[5]						
b)	At 18°C, the heat of solution of anhydrous CuSO ₄ in a large volume of water is -15 , 800 Cal mol ⁻¹ , while that of CuSO ₄ , 5H ₂ O is 2750 Cal mol ⁻¹ . Find the heat of reaction of the following reaction : CuSO ₄ (s)+5H ₂ O(ℓ) = CuSO ₄ , 5H ₂ O(s)	[3]						
c)	Joule-Thomson effect is generally accompanied by a decrease in temperature. Explain.	[3]						
d)	For a reaction at 25°C, enthalpy and entropy changes are $-11.7 \times 10^3 \text{J} \text{ mol}^{-1}$ and $-105 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$							
	respectively. Calculate Gibbs free energy.	[2]						

80參G3